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Experimental bulk mixing data on disordered bimetallics of Ni,
Cu, Rh, Pd, Ag, Ir, Pt, and Au are used to parametrize the recently
developed bond order metal simulator (BOS-mixing) model, includ-
ing a full error analysis. This model characterizes the variation of
metal–metal bond strength with number and type of atomic neigh-
bors. The model is shown to accurately fit experimental mixing
energy curves as a function of composition irrespective of whether
the curves are symmetric or asymmetric around the 50% value. As
an illustration of the utility of the BOS-mixing model, we predict
the microstructures of bimetallic clusters with 201 atoms (or 61%
dispersion) and a composition of 50%–50%. The examples demon-
strate how differences in surface energy, mixing energy, and mixing
entropy either compete or cooperate in determining the microstruc-
ture of small bimetallic clusters. c© 1997 Academic Press

I. INTRODUCTION

Bimetallic catalysts are widely used in the automobile
and petroleum industries, e.g., to transform hydrocarbons,
manufacture nitric acid, and simultaneously convert car-
bon monoxide, hydrocarbons, and nitrogen oxides in au-
tomobile exhaust (1–6). Compared to monometallic cata-
lysts, bimetallic catalysts are superior in activity, selectivity,
and stability. For example, in catalytic reforming of naph-
tha, bimetallic Pt-based systems appear much better than
traditional monometallic Pt catalysts (7). Of these three
advantages, enhanced selectivity is perhaps the most desir-
able, and the goal of promoting a catalyst’s activity for a
desirable reaction and/or hindering the catalyst’s activity
for undesirable reactions has been a challenge for many
years.

In principle, a bimetallic catalyst can enhance selectiv-
ity in two ways: (1) association of different reactions with
different metallic components, (2) association of different
reactions with different ensemble sizes of the same metal-
lic component. The former case requires properly selecting
the components of the catalyst to expose metal atoms for
desirable reactions on active sites. The latter case requires
knowledge of detailed structures and microstructures of
the bimetallic catalysts. Such detailed microstructural in-

formation is extremely difficult to obtain experimentally,
while reliable theoretical predictions require an accurate
and computationally efficient model capable of predicting
the interplay between number and type of bonding coordi-
nation that controls this phenomena.

We have recently introduced a new bond order metal
simulator model (BOS-mixing) (8) based upon early work
of King and co-worker (9, 10) [called the surface-modified
pair potential model (SMPP) by them]. They allowed the
metal–metal bond energy to vary with coordination irre-
spective of type, and allowed an average variation with
type (which describes only symmetric mixing curves and
makes no distinction between ordered and disordered al-
loys). Later, DePristo and co-workers (11–16) systemati-
cally calculated the metal–metal bond variation with coor-
dination, called the site energy, but neglected any variation
with type of neighbor. The parametrization of their model
successfully predicted features dominated by the variation
of bonding energy with coordination in different metals,
e.g., surface segregation due to differences in surface ener-
gies (11–16). However, it did not describe the segregation
and micromixing caused by variation in the type of metal–
metal bond. This limitation was removed in the BOS-mixing
model (8) which expressed the site energy of an atom with
fixed coordination by a quadratic function of the number
of mixed metal bonds.

In the original work of Ref. (8), the BOS-mixing model
was parametrized from the mixing energy, dimer bond
energy, fcc(111) surface energy, and bulk cohesive en-
ergy resulting from the non-self-consistent electron den-
sity functional-based corrected effective medium (CEM)
theory. The simplest CEM framework was used which ne-
glects the difference in kinetic-exchange-correlation en-
ergies between atoms in bulk and surface environments,
at the same average electron density. This method is fast
enough to use in large-scale molecular dynamics and Monte
Carlo simulations and thus has the acronym MD/MC-CEM
(17). Since the MD/MC-CEM method was also used to
predict the structures of small clusters, the BOS-mixing
model was tested rigorously. For the 10 ordered bimetal-
lic alloys formed from Ni, Cu, Rh, Pd, and Ag, only for
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a few clusters, e.g., Ni101Pd100, did the BOS-mixing model
display some inaccuracies due to the large size mismatches
which distorted the clusters’ shapes from the perfect lattice
structures.

The mixing energies predicted by CEM and MD/MC-
CEM methods are generally not an accurate representation
of the experimental mixing energy data (17), and the theo-
retical values do not exhibit the complication of disordered
vs ordered alloy formation which occurs in the experimen-
tal data. Since use of accurate mixing data will be crucial to
describe real catalysts and to help design new catalysts, in
this paper we present the results of using only experimental
data to parametrize the BOS-mixing model. The bimetallic
systems treated here include all the disordered alloys
formed from Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. The
parametrization of ordered alloys is more complicated and
will be presented in another paper (18). As an illustration
of the BOS-mixing model, we show microstructures of
bimetallic catalysts with 201 atoms and a composition
of 50%–50%. Exhaustive studies of the variation of the
microstructures with the dispersion, composition, and pres-
ence of adsorbates will be discussed in another paper (19).
Although all these studies are carried on perfect lattice
structures, it is important to mention that the size effect can
be included approximately by using a short-time molecular
dynamics simulation after the cluster mixing arrange-
ment is determined, as will be illustrated by comparison
to experimental X-ray diffraction spectra of CuxPd1−x

clusters (20).

II. THEORY

A complete derivation of the BOS-mixing model was
provided in Ref. (8). We merely state the results here, and
refer the interested reader to that article for details. For a
system of N atoms, {Ai , i = 1, . . . , N} of two types (“A” or
“B”), the interaction energy was expressed as a sum of the
site energies,

1E({Ai }) =
N∑

i=1

ε
αi
Zi ,Mi ofβi ,

[1]

where αi and β i are either A-type or B-type atoms. N is
the total number of atoms in the system. Zi and Mi are the
coordination number (i.e., number of nearest neighbors)
and the number of unlike atoms around a central atom of
type αi. The site energy for an A-type atom surrounded by
M of B-type and Z-M of A-type is written explicitly as

εA
Z,M of B = εA

Z + M1EA
Z,A–B +

M(M − 1)
2

λA
Z,A–B, [2]

where εA
Z is the interaction energy for a Z-coordinated

A-type atom with all A-type neighbors, 1EA
Z,A–B is the

energy change of the first A–B vs A–A bond, and λA
Z,A–B

is the incremental variation in A–B bond. An analogous
expression for a B type atom is

εB
Z,M of A = εB

Z + M1EB
Z,A–B +

M(M − 1)
2

λB
Z,A–B. [3]

Since the site energy depends on the chemical identity of
nearest neighbors, the interaction energy of the system is
changed by switching the positions of two unlike atoms
with the same coordination number. Thus, the alloy heat of
formation or mixing energy (1Emix) does not necessarily
vanish.

Six parameters are required to implement Eqs. [1]–[3]
for a binary alloy: site energies of homogenous system,
εA

Z and εB
Z , and mixing parameters, 1EA

Z,A–B, 1EB
Z,A–B,

λA
Z,A–B, and λB

Z,A–B. The site energies of homogenous sys-
tems are determined from experimental data following Ref.
(16). For Z= 1, an atom has one nearest neighbor and thus
εA

1 = −D0/2, where D0 is the experimental dimer dissocia-
tion energy. For Z= 9, an atom has nine nearest neighbors
and thus εA

9 is set equal to the interaction energy of an atom
in the top layer of the (111) surface. This is just the sum of
the bulk cohesive energy, −Ecoh, and the surface energy at
0 K, σ (111), multiplied by the area per atom, on the (111)
surface, (

√
3/4)a2

0 where a0 is the lattice constant. Most ex-
perimental surface energies were taken from Ref. (21) and
extrapolated to 0 K (22), except those for Ir and Au, which
were taken from Ref. (23). Finally, for Z= 12, an atom has
12 nearest neighbors and thus εA

12 = −Ecoh. It was found
that these three data fall almost on a straight line for most
metals (16), indicating that a simple linear dependence can
be used to express the variation of the site energies with
coordination (1≤Z≤ 12):

εA
Z =


εA

1 +
(
εA

9 − εA
1

) · (Z − 1)
8

1 ≤ Z ≤ 9

εA
9 +

(
εA

12 − εA
9

) · (Z − 9)
3

9 ≤ Z ≤ 12.

[4]

To obtain the four remaining mixing parameters, we
utilize experimental mixing energies for the bulk systems
at compositions of A1/32B31/32, A1/4B3/4, A1/2B1/2, A3/4B1/4,
and A31/32B1/32 (23, 24). For a disordered bimetallic al-
loy formed in the reaction, xA+ (1− x)B→AxB1−x, the
mixing energy (per atom) as calculated from 1Emix =
E(AxB1−x) − x E(A) − (1 − x)E(B) is given as the above
five compositions by

1Emix(A1/32B31/32) = 3
8

(
1EA

12,A–B +1EB
12,A–B

)
+ 33

16
λA

12,A–B [5a]
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1Emix(A1/4B3/4) = 9
4

(
1EA

12,A–B +1EB
12,A–B

)
+(9λA

12,A–B +
9
4
λB

12,A–B

)
[5b]

1Emix(A1/2B1/2) = 3
(
1EA

12,A–B +1EB
12,A–B

)
+ 15

2

(
λA

12,A–B + λB
12,A–B

)
[5c]

1Emix(A3/4B1/4) = 9
4

(
1EA

12,A–B +1EB
12,A–B

)
+
(

9
4
λA

12,A–B + 9λB
12,A–B

)
[5d]

1Emix(A31/32B1/32) = 3
8

(
1EA

12,A–B +1EB
12,A–B

)
+ 33

16
λB

12,A–B. [5e]

This can be written in convenient matrix–vector notation
as

1Emix = CdisorderP, [6]

where the individual matrices and vectors are

1Emix =



1Emix(A1/32B31/32)

1Emix(A1/4B3/4)

1Emix(A1/2B1/2)

1Emix(A3/4B1/4)

1Emix(A31/32B1/32)


[7]

Cdisorder =



3/8 33/16 0

9/4 9 9/4

3 15/2 15/2

9/4 9/4 9

3/8 0 33/16


[8]

P =

1EA
12,A–B +1EB

12,A–B

λA
12,A–B

λB
12,A–B

 . [9]

Note that the energies of formation are actually
functions of three parameters, 1EA

12,A–B + 1EB
12,A–B,

λA
12,A–B, and λB

12,A–B. Although these three parameters
are (over)determined, in principle, by these five experi-
mental mixing energies, the parametrization procedure is
complicated due to lack of knowledge about both the de-
gree of disorder of the alloy and the measurement uncer-
tainty. A detailed description of the fitting procedure is
contained in the next section. Finally, once the parameter
1EA

12,A–B+1EB
12,A–B is known, the individual components

of 1EA
Z,A–B and 1EB

Z,A–B with any coordination Z is pro-
vided by the relationship (8),

1EA
Z,A–B =

1EA
12,A–B +1EB

12,A–B

2
−
(
εA

Z − εB
Z

)
2Z

[10a]

1EB
Z,A–B =

1EA
12,A–B +1EB

12,A–B

2
+
(
εA

Z − εB
Z

)
2Z

. [10b]

The dependence of 1EA
Z,A–B+1EB

Z,A–B, λA
Z,A–B, and

λB
Z,A–B on Z is neglected, or in mathematical terms

1EA
Z,A–B +1EB

Z,A–B = 1EA
12,A–B +1EB

12,A–B [11a]

λA
Z,A–B = λA

12,A–B [11b]

λB
Z,A–B = λB

12,A–B. [11c]

With all four parameters, we can apply the BOS-mixing
model to calculate the energy of any geometrical arrange-
ment of the atoms.

III. DETERMINATION OF MIXING PARAMETERS

In Table 1, the experimental mixing enthalpies and mea-
surement temperature are shown for the 10 binary bulk
alloys formed from Ni, Cu, Rh, Pd, Ag, Ir, Pt, Ir, and Au
which have positive or small negative mixing enthalpies (23,
24). We do not consider alloys with a large negative enthal-
phy of mixing since these are likely either to be ordered or
to exhibit domains of disorder and order. Ordered systems
will be presented in another paper (18) in which the SCF-
DFT calculated values for the ordered systems are used to
judge the ordering degree in the experimental data. The ex-
perimental mixing energies are set equal to the enthalpies
since the difference between 1Hmix and 1Emix is typically
on the order of only 1–2 kJ/mol even at 1000 K for solids.

Note that three alloys, Ni–Cu, Ni–Au, and Cu–Ag, have
positive mixing energies at all five compositions. A different
type of mixing energy curve is displayed by Ni–Pd which
is positive at Ni-rich and negative at Pd-rich compositions.
Finally, six alloys, Ni–Rh, Cu–Rh, Rh–Pd, Rh–Ir, Pd–Pt, and
Ir–Pt, have information at only one composition, A1/2B1/2,
which is positive for Ni–Rh, Cu–Rh, Rh–Pd, and Rh–Ir
alloys, and negative for Pd–Pt and Ir–Pt alloys.

The three parameters in Eq. [9] are determined by a gen-
eral approach including model applicability, structure test-
ing, data fitting, and error analysis. First, we analyze the
data to ensure the applicability of the BOS model, i.e., to
discover the structures contained within the data. To do this,
we note that using the equations either for disordered al-
loys in Eq. [5] or for ordered alloys in Ref. (8), the following
relationship holds:

2[1E(A1/4B3/4)+1E(A3/4B1/4)]
31E(A1/2B1/2)

= 1. [12]



                            

MICROSTRUCTURES OF BIMETALLIC CLUSTERS 403

TABLE 1

Mixing Energies (kJ/mol) for Bimetallic Alloys, AxB1−x, as a Function of Composition

Experimental values (input) BOS-mixing model (output)a

A–B 0.031 0.25 0.50 0.75 0.969 T (K) Ref. 0.031 0.25 0.50 0.75 0.969 σRMS
b Qc

Ni–Cu 0.10 0.90 1.78± 0.42 1.73 0.30 973 20 0.10 0.95 1.71 1.62 0.30 0.07 0.62
Ni–Rh 1.1 1100 21 0.14 0.83 1.10 0.83 0.14 — —
Ni–Pd −0.26 −1.18 −0.54± 1.26 0.48 0.17 1273 20 −0.27 −1.08 −0.47 0.39 0.18 0.08 0.019
Ni–Au 0.65 4.82 7.56± 0.42 5.89 0.84 1150 20 0.65 5.10 7.23 5.74 0.84 0.23 0.74

Cu–Rh 5.8 1500 21 0.73 4.35 5.80 4.35 0.73 — —
Cu–Ag 0.59 3.49 4.24± 0.21 3.05 0.46 1423 20 0.52 3.10 4.13 3.10 0.52 0.21 0.0087

Rh–Pd 10 1575 21 1.25 7.50 10.00 7.50 1.25 — —
Rh–Ir 2 1461 21 0.25 1.50 2.00 1.50 0.25 — —

Pd–Pt −3.6 298 21 −0.45 −2.70 −3.60 −2.70 −0.45 — —

Ir–Pt −3 1478 21 −0.38 −2.25 −3.00 −2.25 −0.38 — —

a From Eq. [5] using the parameters in Table 2.

b RMS deviation defined as

√∑5

i=1

[
1E

output
mix

(Axi B1−xi
)−1E

input
mix

(Axi B1−xi
)

]2

5− 1 .

c The goodness-of-fit estimated with the probability that the observed χ2 exceed the value of χ2 obtained in fitting procedure by chance, Q( ν2 ,
χ2

2 )

where ν is 2 for Ni–Cu, Ni–Pd, and Ni–Au and 4 for Cu–Ag.

For Ni–Cu, Ni–Pd, Ni–Au, and Cu–Ag this ratio is 0.99, 0.86,
0.94, and 1.03, respectively. With the possible exception of
Ni–Pd, the BOS model is consistent with the data structure.
Second, we analyze the data to determine if the alloys are
disordered. To do this, we note that using the equations
for ordered alloys in Ref. (8) along with Eq. [5] yields the
relationship

1Emix(A1/4B3/4)−1Emix(A3/4B1/4)

1Emix(A1/32B31/32)−1Emix(A31/32B1/32)

=
{

36/11≈ 3.3 disordered
64/11≈ 5.8 ordered.

[13]

For Ni–Cu, Ni–Pd, Ni–Au, and Cu–Ag, this ratio is 4.1,
3.9, 5.7, and 3.4, respectively. Thus, the Ni–Cu, Ni–Pd, and
Cu–Ag systems are apparently disordered while Ni–Au sys-
tem might be ordered. However, we still consider it in this
paper since we have found that microstructure of Ni101Au100

is the same irrespective of whether ordered or disordered
parameters are used. This is true only when the system has
a positive mixing energy that is not too large compared to
the surface energy difference.

Next, we turn to fitting of the cases with five experimental
mixing energies by least square minimization of the quan-
tity

χ2 =
5∑

i=1

(
1Ei

mix−expt −1Ei
mix−BOS

σi

)2

, [14]

which is a sum of five squares of normally distributed quan-
tities, each normalized to unit variance. Here,1Ei

mix−expt is

the experimental mixing energy at each of the five compo-
sitions, 1Ei

mix−BOS is the BOS mixing energy at the same
composition, and σ i is the measurement error associated
with experimental datum, 1Ei

mix−expt. Minimization of Eq.
[14] yields the solution (25) for the best-fit parameters:

P = (CT
disorder · s−2 · Cdisorder

)−1 · CT
disorder · s−2 ·1Emix−expt,

[15]

where P is the 3× 1 vector in Eq. [9] and

s =


σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ4 0
0 0 0 0 σ5

 [16]

is the diagonal matrix of experimental uncertainties.
There is little knowledge about these uncertainties except

at a composition of A1/2B1/2, where some information exists
from comparison of mixing energies obtained either in dif-
ferent laboratories or by two or more methods which differ
in principle (24). As listed in Table 1, Ni–Cu and Ni–Pd
alloys have large measurement errors of 24 and 233%, re-
spectively, while Cu–Ag is much smaller at 5.0%. Such er-
rors make little sense since the temperatures and mixing
energies are quite comparable in all four systems. To es-
timate the adequacy of the BOS-mixing model and to de-
termine the accuracy of the parameters, we use an average
relative deviation of 10% at all compositions except for the
impurities (A1/32B31/32 and A31/32B1/32) which are assumed
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TABLE 2

BOS-Mixing Model Parameters (kJ/mol)a

1EA
12,A–B+ Cov

(
λA

12,A–B, Cov
(
λB

12,A–B,

A–B 1EB
12,A–B 1EA

12,A–B 1EB
12,A–B λA

12,A–B λB
12,A–B 1EA

12,A–B +1EB
12,A–B

)
1EA

12,A–B +1EB
12,A–B

)
Cov
(
λA

12,A–B, λ
B
12,A–B

)
Ni–Cu 0.91± 0.37 4.27± 0.37 −3.36± 0.37 −0.12± 0.07 −0.02± 0.07 −0.026 −0.027 0.005
Ni–Rh 0.37 −5.08 5.45 0.0 0.0 — — —
Ni–Pd −0.14± 0.24 2.01± 0.24 −2.42± 0.24 −0.06± 0.05 0.16± 0.05 −0.012 −0.011 0.002
Ni–Au 6.61± 1.67 5.84± 1.67 0.77± 1.67 −0.89± 0.31 −0.79± 0.31 −0.517 −0.520 0.096

Cu–Rh 1.93 −8.12 10.05 0.0 0.0 — — —
Cu–Ag 1.38± 0.04 2.86± 0.04 −1.48± 0.04 0.0 0.0 — —

Rh–Pd 3.33 9.14 −5.81 0.0 0.0 — — —
Rh–Ir 0.67 −4.45 5.12 0.0 0.0 — — —

Pd–Pt −1.20 −8.44 7.24 0.0 0.0 — — —

Ir–Pt −1.00 3.92 −4.92 0.0 0.0 — — —

a εA
12 values are −4.44, −3.49, −5.75, −3.89, −2.95, −6.94, −5.84 and −3.81 eV for Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, respectively (16). λA

Z,A–B =
λB

Z,A–B = 0 are assumed in the fitting for Ni–Rh, Cu–Rh, Cu–Ag, Rh–Pd, Rh–Ir, Pd–Pt, and Ir–Pt. See the text for details.

accurate to 5%. The smaller relative deviations for the im-
purity data reflect both the ease of such measurements and
the agreement between the ordered and disordered model
for such low concentrations.

Using standard error analysis with the above uncertain-
ties, the BOS-mixing parameters and uncertainties were
found as displayed in Table 2. The variance (squared uncer-
tainty) of the fitted parameters and the covariance between
each pair of parameters are directly obtained from the ap-
propriate diagonal and off-diagonal elements of the ma-
trix (CT

disorder · s−2 ·Cdisorder)−1, respectively. In addition, the
goodness-of-fit of the data and RMS deviation are reported
in Table 1. The former is estimated by the standard χ2 test,
requiring evaluation of the incomplete gamma function of
Q( ν2 ,

χ2

2 ) in which ν is the number of degrees of freedom.
If Q is larger than ≈0.1, then the fit is quite believable. If
it is smaller than ≈0.1 but larger than ≈0.001, then the fit
may be acceptable. If Q is less than ≈0.001 then the model
and/or estimation procedure is questionable (25).

From Tables 1 and 2, it is apparent that the BOS-mixing
model is excellent for Ni–Cu and Ni–Au, and quite ac-
ceptable for Ni–Pd. For Cu–Ag, the experimental mix-
ing energies are very symmetric with the variation from
x= 1/32 to 31/32, nearly equal to that of the coefficient
of 1EA

12,A–B + 1EB
12,A–B in Eq. [5], i.e., 1 : 6 : 8 : 6 : 1. This

makes it impossible to extract the parameters λA
12,A–B and

λB
12,A–B without large statistical correlation between these

and the 1EA
12,A–B + 1EB

12,A–B. Since the former will be
small for this case, we have fixed λA

12,A–B and λB
12,A–B at

zero for the Cu–Ag alloy. Under this approximation, the
standard deviation of fitting is slightly increased (from 0.05
to 0.21 kJ/mol), but it is still reasonably small. From this
case, one can clearly see that the fitting procedure offers

a compromise between model complexity and uncertainty.
In general, the agreement between the experimental mix-
ing energies and BOS-mixing energies, which are calculated
with the parameters in Table 2, is obvious. The BOS-mixing
model describes well not only symmetric mixing energy
curves, e.g., Cu–Ag, but also asymmetric mixing energy
curves, e.g., Ni–Pd.

There are six alloys, Ni–Rh, Cu–Rh, Rh–Pd, Rh–Ir,
Pd–Pt, and Ir–Pt, which do not follow the procedure de-
scribed above. Due to insufficient knowledge about the
mixing energy for these alloys, it is not possible either to
evaluate the ordering or disordering of the alloy structure
or to determine the three BOS parameters. An approx-
imate approach is to assume a disordered structure, since
the mixing energies are small, and to let the two parameters,
λA

12,A–B, and λB
12,A–B, be zero. Therefore, the parameter of

1EA
12,A–B +1EB

12,A–B is directly derived from Eq. [5c]. In
the event that the systems were really ordered analogous to
the Ni–Pt one, the parameter1EA

12,A–B+1EB
12,A–B would

be reduced by a factor of 3/4 but the coefficients for nearly
all situations in clusters would also be increased by a similar
factor, leading to negligible net change. Thus, there would
be very little difference in mixing behaviors for these sys-
tems since the bulk-surface segregation is controlled by the
significant surface energy differences while the micromix-
ing on the surface is controlled by the sign of the mixing
energy, which is the same irrespective of whether ordered
or disordered analysis is used. We emphasize that this is the
case only when the λA

12,A–B, and λB
12,A–B are set to zero.

Browsing through the results in Table 2, we notice that
the two mixing parameters, λA

12,A–B and λB
12,A–B, differ sub-

stantially for the two systems with large asymmetric mixing
energies, e.g., Ni–Cu and Ni–Pd. For the Ni–Pd system, the



              

MICROSTRUCTURES OF BIMETALLIC CLUSTERS 405

two parameters differ even in sign, indicating that the Ni
atom prefers to bind with large numbers of Pd atoms while
Pd atoms do not prefer to bond with large numbers of Ni
atoms. This system also demonstrates that the quadratic
term in Eqs. [2] and [3] cannot be neglected since the
variation of mixed bond strength with the number of mixed
bonds can have important physical consequences.

IV. APPLICATION TO MICROSTRUCTURES
OF BIMETALLIC CLUSTERS

We used the BOS-mixing model with the parameters in
Table 2 to predict the microstructures of bimetallic clusters,
A101B100. The perfect cubo-octahedral structure is used,
which has a 61% dispersion with 122 surface atoms. Of these
122, there are 24, 36, 6, and 56 atoms occupying the corner,
edge, fcc(100), and fcc(111) sites, respectively, and having
6-, 7-, 8-, and 9-fold coordination, respectively. We initial-
ized the bimetallic clusters with all 79 bulk sites occupied
by the atoms with higher surface energy and with the re-
maining 122 atoms randomly occupying the surface sites. To
find the equilibrium distribution, pairs of atoms of different
type were switched in the lattice, the system energy change
was computed, and the standard Monte Carlo prescription
for retention of configurations was invoked.

The microstructures of bimetallic clusters, i.e., segrega-
tion to surface, edge, and corner sites and micromixing on
the surface, are controlled by various physical and chemical
factors. The four main contributions include: (i) the differ-
ence of surface energies (i.e., the energy difference between
the surface and bulk sites, as shown in Table 3); (ii) the mix-
ing energy; (iii) the entropy; (iv) the atomic size difference.
The first two quantities are incorporated into the parame-
ters of the BOS-mixing model. The third quantity (entropy)
is included in the Monte Carlo simulations. The last quan-
tity (size effect) is not included in the BOS model. If there
is a large size mismatch of two elements (which prevents
optimal separation for both types), this forces a deviation

TABLE 3

“Surface Energy” (kJ/mol) at fcc(111), fcc(100), Edge, Corner
Sites in the 201-Atom Clustersa

σ (111) σ (100) σ (edge) σ (corner)

Ni 80.1 111.0 141.8 172.7
Cu 69.5 90.7 111.9 133.1
Rh 111.0 148.6 186.2 224.8
Pd 85.9 115.8 145.7 175.6
Ag 59.8 78.2 95.5 113.9
Ir 115.8 163.1 209.4 256.7
Pt 100.3 139.9 178.5 218.1
Au 65.6 89.7 112.9 137.0

a The surface energy is defined as εZ-ε12, where εZ is the site energy and
Z= 9, 8, 7, and 6 for (111), (100), edge, and corner sites, respectively.

from the BOS-predicted results: the atoms of larger size will
tend to be expelled to surfaces (15). We expect this to be a
rather small effect except in the case of very large size mis-
match, such as Ni–Ag or Ni–Au, and even in this case, the
cubo-octahedral shape has been found to be a reasonable
representative for real catalysts (26, 27).

With neglect of size effects in the BOS model, we can
identify the characteristic behavior of each of the three
other factors. The difference of surface energy always
causes segregation of the atoms with lower surface energy
to the lower coordinated sites, most obviously leading to
surface enrichment of the atoms with lower surface energy.
The mixing energy effect depends upon the sign: for posi-
tive values atoms favor having neighbors of the same type,
while for negative values atoms favor having neighbors of
the other type. The entropy term always favors mixing of
atoms of different types. The microstructure of a cluster
results from competition among these three terms. Some-
times one term may be so much larger than the others as to
dominate the microstructure and thus make the prediction
of the microstructure rather simple.

To obtain an idea of the sizes of these terms and to
describe the simplistic analysis that is often possible, we
present the surface energies in Table 3. The reader should
note that typical surface energy difference for fcc(111) sites
are 5–40 kJ/mol in magnitude. For comparison, the mixing
energies in Table 1 are generally 2–8 kJ/mol in magnitude,
while the entropy of mixing is such that T1S has a value
of 5.8 kJ/mol at 1000 K for an ideal binary 50%–50% mix-
ture. The most common situation will involve dominance
by the surface energy difference in which the characteris-
tic behavior is segregation of the low surface energy atom
to the surface. The secondary behavior is surrounding of
a surface atom by the same type of atom for positive mix-
ing energy and different type of atom for negative mixing
energy. A tertiary behavior is the increase of mixing with
temperature due to entropy.

We provide a detailed analysis of overall surface seg-
regation for 10 of the alloys in Table 4. The surface sites
include all nonbulk sites, i.e., the corner, edge, fcc(100),
and fcc(111) sites. At 0 K, where the effect of entropy van-
ishes, we notice that systems can be divided into two classes.
The first has small positive or negative mixing energies and
includes Ni–Cu, Ni–Rh, Ni–Au, Cu–Rh, Cu–Ag, Rh–Pd,
Rh–Ir, Pd–Pt, and Ir–Pt. The surface segregation of these
alloys is dominated by the differences of surface energies,
as is evident from Table 4. All 79 bulk sites are occupied
by the type of atom with higher surface energy, except for
the Pd–Pt system in which three Pd atoms of lower surface
energy occupy these bulk sites. Thus, the first element oc-
cupies 18% of surface sites if it has higher surface energy
or 83% of surface sites (80% for Pd–Pt) if it has lower sur-
face energy. The second class of alloy, with Ni–Pd as the only
example, has moderate negative mixing energies, at Pd-rich
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TABLE 4

Data and Results on 201-Atom Bimetallic Clusters

% of surface sites
Surface energy Mixing energy occupied by “A”

(kJ/mol) (kJ/mol)
A–B [σ (111; A)−σ (111; B)] [1Emix(1/2, 1/2)] 0 K 300 K 1000 K

Ni–Cu 11 1.8 18 18 24
Ni–Rh −31 1.1 83 83 81
Ni–Pd −6 −0.54 43 44 49
Ni–Au 15 7.6 18 20 28

Cu–Rh −42 5.8 83 83 83
Cu–Ag 10 4.2 18 18 28

Rh–Pd 25 10 18 18 18
Rh–Ir −5 2 83 83 74

Pd–Pt −14 −3.6 80 79 74

Ir–Pt 16 −3 18 21 29

compositions, which compete with the difference of surface
energy in controlling of microstructure of Ni–Pd. As a re-
sults, 49 Ni atoms of smaller surface energy enter bulk sites
to replace Pd atoms, causing overall surface segregation of
Ni to decrease to 43%. Such an effect could not have been
predicted without the quantitative BOS-mixing model.

The influence of entropy on the microstructure is clearly
seen from the variation of surface segregation with the tem-
perature in Table 4. For every system, the mixing increases
with increasing temperature, although the amount depends
sensitively on the surface energy difference compared to
T1S. For systems such as Ni–Rh, Cu–Rh, and Rh–Pd, the
surface energy difference is easily five times T1S even
at 1000 K and the effect of entropy is negligible. For the
other systems, the mixing increases quite substantially by
1000 K.

Displayed in Figs. 1 and 2 are two prototypical alloys,
Ni–Cu and Ir–Pt, at 0 K. Both alloys exhibit similar surface-
bulk segregation (i.e., interior sites are occupied by the type
of atoms having higher surface energy). However, they dis-
play opposite microstructures on the surfaces with segre-
gation of the two types of atoms in Ni–Cu and mixing in
Ir–Pt.

A more sophisticated analysis of surface compositions
for all 10 alloys is displayed in Table 5. The number of un-
like surface neighbors is obtained by counting the surface
neighbors of different type than the central surface atom.
We notice that at 0 K the element having higher surface en-
ergy and occupying fcc(111) site has an average of 2.4–2.7
surface neighbors of the other type for the alloys with pos-
itive mixing energy. However, for the alloys with negative
mixing energy the element has 6 unlike surface neighbors.
At high temperatures, both kinds of systems tend to have
an equal number of unlike surface neighbors, which is close
to the random distribution.

FIG. 1. The lowest-energy configuration for Ni101Cu100 at 0 K pre-
dicted by the BOS-mixing model. The first metal is shown as a dark sphere
and the second as a light sphere.

V. CONCLUSIONS

We parametrized the bond order metal simulator model
(BOS-mixing model) in this paper for 10 disordered alloys
formed from Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. In the

FIG. 2. Same as Fig. 1 but for Ir101Pt100.
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TABLE 5

The Percentage of fcc(111) Sites Occupied by the Element with
Higher Surface Energy in the 201-Atom Bimetallic Catalysts and
Their Averaged Unlike Surface Neighbors

0 K 300 K 1000 K

A–B % Unlike neighbor % Unlike neighbor % Unlike neighbor

Ni–Cu 39 2.7 39 4.4 43 4.3
Ni–Rh 38 2.6 37 4.7 35 4.7
Ni–Pd 7 6.0 25 3.3 41 3.0
Ni–Au 39 2.7 40 3.3 47 3.7

Cu–Rh 38 2.6 38 3.5 37 4.4
Cu–Ag 38 2.4 38 3.8 39 3.8

Rh–Pd 39 2.7 39 2.8 37 4.1
Rh–Ir 38 2.6 38 4.4 49 4.1

Pd–Pt 43 6.0 47 5.1 52 4.4

Ir–Pt 39 6.0 45 5.0 50 4.2

BOS model, the variation of metal–metal bond strength
with number and type of atomic neighbors is described
using a quadratic form. The variation with coordination
for homogeneous systems was taken from previous work
(15) which used the experimental dimer binding energies,
surface energies, and cohesive energies. The variation with
type of neighbor was determined in this paper by fitting the
experimental mixing energies as a function of composition
for bulk bimetallic systems. First, we determined that the
experimental data was consistent with the BOS model for
disordered bulk alloys. Then, to implement the fitting, we
used the weighted least squares technique including error
propagation and analysis. All best-fitted parameters are ac-
companied by their uncertainties.

Using these parameters, the BOS-mixing model was used
to predict microstructures of bimetallic clusters at a size of
201 atoms (60% dispersion) and a composition of 50%–
50%. These microstructures included the overall surface
segregation as well as the detailed segregation to differ-
ent sites and micromixing. We have found that three ef-
fects determine the microstructures: the difference of sur-
face energies, mixing energy, and entropy. All these studies
were performed on the perfectly shaped cubo-octahedral
structures neglecting any size effect. It has been noticed
that the size effect can be included by introducing a short-
time molecular dynamics annealing of the BOS-determined
structure, and this will be reported in future work compar-
ing experimental data on cluster shape and structure (20).
However, we do emphasize that even without this modifi-
cation the BOS-mixing model can be used to provide use-

ful information about microstructures for many bimetallic
clusters.
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